Ela Sign Patterns of the Schwarz Matrices and Generalized Hurwitz Polynomials
نویسنده
چکیده
The direct and inverse spectral problems are solved for a wide subclass of the class of Schwarz matrices. A connection between Schwarz matrices and the so-called generalized Hurwitz polynomials is found. The known results due to H. Wall and O. Holtz are briefly reviewed and obtained as particular cases.
منابع مشابه
Determinants and permanents of Hessenberg matrices and generalized Lucas polynomials
In this paper, we give some determinantal and permanental representations of generalized Lucas polynomials, which are a general form of generalized bivariate Lucas p-polynomials, ordinary Lucas and Perrin sequences etc., by using various Hessenberg matrices. In addition, we show that determinant and permanent of these Hessenberg matrices can be obtained by using combinations. Then we show, the ...
متن کاملThe Operational matrices with respect to generalized Laguerre polynomials and their applications in solving linear dierential equations with variable coecients
In this paper, a new and ecient approach based on operational matrices with respect to the gener-alized Laguerre polynomials for numerical approximation of the linear ordinary dierential equations(ODEs) with variable coecients is introduced. Explicit formulae which express the generalized La-guerre expansion coecients for the moments of the derivatives of any dierentiable function in termsof th...
متن کاملNumerical solution of Fredholm integral-differential equations on unbounded domain
In this study, a new and efficient approach is presented for numerical solution of Fredholm integro-differential equations (FIDEs) of the second kind on unbounded domain with degenerate kernel based on operational matrices with respect to generalized Laguerre polynomials(GLPs). Properties of these polynomials and operational matrices of integration, differentiation are introduced and are ultili...
متن کاملSign properties of Metzler matrices with applications
Several results about sign properties of Metzler matrices are obtained. It is first established that checking the sign-stability of a Metzler sign-matrix can be either characterized in terms of the Hurwitz stability of the unit sign-matrix in the corresponding qualitative class, or in terms the negativity of the diagonal elements of the Metzler sign-matrix and the acyclicity of the associated d...
متن کاملEla Bidiagonal Decompositions, Minors and Applications
Abstract. Matrices, called ε-BD matrices, that have a bidiagonal decomposition satisfying some sign constraints are analyzed. The ε-BD matrices include all nonsingular totally positive matrices, as well as their matrices opposite in sign and their inverses. The signs of minors of ε-BD matrices are analyzed. The zero patterns of ε-BD matrices and their triangular factors are studied and applied ...
متن کامل